
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 1; January-March, 2017, pp. 33-37
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Preeminent need of Prioritization in
Regression Testing

Aman Hooda1 and Ankit Kumar2
1,2Department of Computer Science, B.M University, Rohtak, Haryana, India

E-mail: 1amandagar67@gmail.com, 2ankit524.in@gmail.com

Abstract—Regression testing is a crucial activity of software
maintenance phase and test case prioritization is a key strategy that
has the potential to save time and money by identifying errors early,
saving resources and delivering a more defect free product.
Regrettably it is often less formal and rigorous than it should be. The
general approach is not to test everything a little, but to focus on high
risk areas and the worst areas. In recent years, researchers have
intensively focused on investigating test case prioritization which
aims to reorder test cases to increase the rate of fault detection
during regression testing. In this paper, the significance of
prioritization in regression testing is highlighted.

Keywords: Software maintenance, Regression testing, Test case
prioritization, Fault detection.

1. INTRODUCTION

Testing is not something that happens once and is then
forgotten. Testing is an iterative and umbrella activity. There
is never enough time or resources to test everything or to do
exhaustive testing. Tests may be needed to be used and reused
many times over [1][3]. This potential needs to be considered
when tests are being designed. Testing is context dependent
which basically means that the way you test an e-commerce
site will be different from the way you test a commercial off
the shelf application. We need an optimal amount of testing
based on the risk assessment of the application [2]. Absence of
Error is a Myth i.e. searching and fixing defects does not help
if the system build is unusable and does not fulfill the user’s
needs & requirements. Whenever a change is done to
software, it must be tested in isolation and as part of the
software once the integration has taken place. If the proposed
system change is being tested in isolation, it is likely that stubs
and drivers would probably to be used to test it. When the
change is subsequently incorporated into the full system, a
regression test pack must be framed and executed to exercise
that no new problems have been introduced and no existing
problems have been uncovered as a result of change.

2. REGRESSION TESTING

Regression testing is validation testing which provides a firm
validation of each change to an application under development
or being modified.

Each time a defect is being removed; there exists an element
of uncertainty about the reliability and functionality of an
application that went to the point of failure or replacement
[2][3].The essence of regression testing is exposure of
problems that shouldn't be there, either because they were
eliminated before or they weren't in the product the last
time(s) it was tested.

Regression testing is probably the selective retesting of an
application or the system that has been modified to insure that
no previously working components, functions or features fail
as result of the repairs[2][3][4]. It is important to understand
that regression testing doesn’t test that a specific defect has
been fixed; it verifies that the rest of the application up to the
point of repair was not adversely affected by the fix[2][4]. The
sole purpose of regression testing is to determine if the system
has “regressed” the existing features following a change.

Typically, regression testing can be explained mathematically
as [6]. Let P be a procedure or program, let P′ be a changed
version of P and let T be a test suite for P. A distinctive
regression test proceeds as follows:

 Select T′⊆ T, a set of test cases to perform on P′.

 Test P′ with T′. Establish P′’s accurateness with respect to
T′.

 If needed, create T″, a set of new functional or structural
test cases for P′.

 Test P′ with T″, developing P′’s accurateness with respect
to T″.

 Create T″′, a new test suite and test description for P′,
from T, T′and T″.

2.1 Challenges in Regression Testing

Following are the chief testing problems for doing regression
testing:

 With consecutive regression runs, test suites become quite
large. Due to time and budget limitations, the complete
regression test suite cannot be executed.

Aman Hooda and Ankit Kumar

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 1; January-March, 2017

34

 Reducing test suite while achieving maximum test
coverage vestiges a challenge.

 Consideration of frequency of Regression Tests, i.e., after
each modification or each build update or after a bunch of
bug fixes, is a challenge to conclude when the next
regression may occur.

2.2 Generation of regression test suite

Maintenance may be required to bring a system in line with
changes to regulations or enhancements. Tests must be
scheduled. If at any time during software testing life cycle
(STLC), a defect is highlighted, it will be needed to be re-
tested to prove the fix[4]. Other test in related areas should
also be re-run to ensure that fixing one problem has not caused
previously working code to malfunction as it is quite possible
that fixing one problem may reveal other, errors that were nor
apparent.

Adding new features adds up to existing test case pool thus
increasing the cost and time of regression testing and this
directly impacts the schedule and delivery of the product.
Tests therefore need to be sequenced in an order to ensure that
the best testing possible can be performed in the available
circumstances. Identification and sequencing of those areas
that present the maximum risk to the successful use of the
software and to ensure that sufficient number of test to verify
this area have been decided[3][4].

Use cases are probably the most effective way to create a
regression test suite for an application-

 Find out from the requirement specifications document of
the system and decide what functional requirements are?

 Find out from the business what are the major processes
in the application?

 Find out from the users how they use the application to
plan test the cover that use?

The process of generating regression test suite can be depicted
as following:

Fig. 1 Regression test suite generation.

2.3 Factors affecting the size of regression test suite

There are many factors deciding the size of regression test
suite but most determinant are-

2.3.1 Mission-critical: The critical elements of the system
must be tested as much as possible in the time available as the
effect of faults may crash the system and even prevent the
business from carrying out its core tasks.

2.3.2Highest risk: Testing is risk management and so is
regression testing. Therefore regression testing focus on those
test cases which ensure that when the system goes live, there
is least risk of it containing any catastrophic faults.

2.3.3Greatest usage: The basic functional hierarchy must be
checked to ensure cross reference to the requirements.

2.3.4Most complex: Enough test cases to verify technical
criticality of the system must be included into regression test
suite.

2.3.5Most dependencies: Identify all software features and
combinations of features to be tested and include
corresponding test cases in regression test suite.

2.3.6Least understood: Summarize the software items and
software features to be tested. The necessity for each item and
its description may also be included

2.3.7Least tested: Identify all the features and significant
combinations of features that will not be tested and the reasons
for overlooking.

3. PRIORITIZATION

Often all other activities before test execution are delayed due
to inevitable reasons. This results in carrying out testing under
severe pressure. It is not possible to skip the testing phase, nor
to delay the delivery or to test badly. There is a relationship
between the resources used in testing and the risk after testing.
Any system that is released without having been exhaustively
tested runs the risk of containing faults. The solution to this
uncertainty is Prioritization strategy in order to do the best
possible job with limited resources. Test case prioritization
techniques are used to improve the cost-usefulness of
regression testing, order test cases in such a manner that those
cases that are expected to outperform others in detecting
software faults are run earlier in the testing stage [5].

The test case prioritization is to order the test cases in a test
suite so that faults can be revealed as early as possible during
testing. The key idea behind prioritization is that test cases that
are more expected to reveal faults should be run before test
cases that are less likely to reveal faults. The challenge of test
case prioritization is to reduce the number of test cases, while
maintaining quality and customer approval when faced with
the challenge of testing complex applications with limited
resources[4][5].

The purpose of prioritization is to uncover the largest number
and most severe defects as early in the software testing or
regression testing process as possible. These techniques are
discussed and formally described as-

Preeminent need of Prioritization in Regression Testing 35

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 1; January-March, 2017

 Test Suite Minimization (TSM)/ Test Suite Reduction
(TSR) - These techniques remove redundant test cases
permanently to reduce the size of test suite [5][6].

 Test Case Selection (TCS) - These techniques select some
of the test cases and focus on the ones that test the
changed parts of the software. Contrary to TSR technique,
TCS does not remove test cases but selects test cases that
are related to the changed portion of the source code
[5][6].

 Test Case Prioritization- This type of technique identifies
the efficient ordering of test cases to maximize certain
properties such as rate of fault detection or coverage
rate[5][6].

3.1 Factors Affecting Prioritization

There are a wide range of factors that must be considered
while determining the priority of the tests. For each system
these factors will need to be given a ranking to further assist
with the prioritization.

3.1.1 Severity: This factor considers the risk the organization
will be exposed to if a particular function fails. The failure of
that element will leave the organization ‘exposed’ to failure
either through loss of customer or.

3.1.2 Customer Requirements: Having addressed the basic
business critical elements, next preference must be given to
customer requirements. Ensure these elements are tested
properly.

3.1.3 Visibility of Requirements: Requirements must be self-
explanatory, complete and crisp. Requirements tends to be
volatile

3.1.4 Frequency of Change: Figure out the code that is
subjected to frequent change. The more often a specification is
changed, the more often corresponding code will change.

3.1.5 Technical Criticality: There may be instances where the
technical infrastructure is critical especially where many
different platforms are used.

3.1.6 Code Complexity: Code which is complex to develop or
maintain will likely be equally complex to verify as well. The
same applies to complex hardware and networking
configurations.

3.1.7 Probability: There is a strong likelihood of a fault
occurring in a particular function. Then some robust tests
should be created for that part of the system.

3.1.8 Visibility of Failures: An error may not be severe in
terms of its impact on the process but is highly visible and
frequent and will be regarded in poor light.

3.1.9 Priority of requirements: What functionality is crucial to
the success of the system?

3.1.10 Time and other resources: Time and budget are two
major issues that affect the definition of priority. Time
narrows the definition of priority as it grows hence
emphasizing on of testing only critical things. The varied type
of resources available broadens the definition of priority
influencing the scope of priorities.

3.2 SDLC Phase wise factors affecting Prioritization

Due to the increasing complexity of today’s software
demanding systems, the number of test cases in a software
development project increases foe an effective validation &
verification process and the time allocated to execute the
regression tests decreases because of the marketing pressures
[5][7].The order in which the test cases of a test suite are
executed has an influence on the rate at which faults can be
detected [8]. By optimizing the implementation order of test
cases, test case prioritization approaches can effectively
improve the efficiency of software testing [9].

Testing is not just a stage that is planned and executed after
coding and implementation; rather it is an umbrella activity
which is applied to all other phases of software development
life cycle because the cost of correcting an error in later phases
is quite high.

Prioritization can be done at the test generation time, thus
eliminating the need for test suite post processing [10].
Furthermore when a test suite is reused many times for
regression testing, information about the version changes[11]
can be incorporated and histories[12] of detected faults can be
included. Various factors of importance, in each phase of
software development life cycle are-

3.2.1 Requirement Phase: In this phase, the requirements are
discovered, articulated, revealed or derived from the stake
holders and users. This is perhaps the most critical most
difficult most error-prone and most communication intensive
aspect of software development [3][4]. More than 90-95% of
the requirement gathering should be completed in the initial
stage while balance 5% is completed during the development
life cycle. Key factors are-

Table 1: Requirement phase prioritization factors

Name of the factor Description
Customer assigned
priority (RCA)

Measure of the importance assigned by
customer to each requirement.

Completeness (RC) Measure of total no. of requirement covered
by each test case in a test suite.

Fault proneness (PFP) Subjective measure based on historic data of
requirement failure as reported by the
customer.

Ambiguous
requirement(RAR)

Subjective measure of one specification
representing one requirement only.

Requirement
Volatility(RV)

Based on how many times a particular
requirement is changed in development
cycle.

Aman Hooda and Ankit Kumar

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 1; January-March, 2017

36

3.2.2 Analysis & Design Phase: After specifying and
analyzing all the requirements, the process of software design
begins. While the requirements specification activity is
completely in the problem domain, modeling is the first step in
moving from problem domain to solution domain each [1][4].
Design is the only way by which we can accurately translate
the customer’s requirements into a finished software product
or system. Key factors are-

Table 2: Analysis & Design phase prioritization factors

Name of the factor Description
No of functionality
associated with a
module(DFN)

Quantitative measure of no. of
functionality satisfied by each module.

Performance requirement
met by a module(DP)

Measure of performance criteria
satisfied by each module.

Modularity(DM) Measure of justification of modularity
done for the system.

Associations(DA) Measure of cohesions and coupling in
each module.

Interface interactions(DI) Measure of feasible interfaces among
modules.

3.2.3 Coding and Implementation: In this phase, the design of
the system produced during the design phase is translated into
the code in a given programming language, which can be
executed by a computer to achieve a function [1][3]. All
design contains hierarchies to manage complexity. So the
translation from design to code is implemented either in top-
down or bottom-up approach. Key factors are-

Table 3: Coding & Implementation phase prioritization factors

Name of the factor Description
Developer perceived
implementation
complexity(CIC)

Subjective measure of the complexity
anticipated by the development team in
implementing the need and it is evaluated
initially.

Hardware
requirement(CHR)

Decides about type of hardware needed
for the system.

3.2.4 Testing: Once the code is produced, the program testing
initiates. Different testing methodologies are available to
unravel the bugs that were committed during the previous
phases [3][4]. Different testing tools and methodologies are
already available. Key factors are-

Table 4: Testing phase prioritization factors

Name of the factor Description
No. of requirements
associated with a test
case(VR)

Numeric measure of no. of requirement
verified by individual test case in a test
suite.

Test case
Complexity(VTC)

Effort needed to execute the test cases.

Execution time(VET) Represents total time required for the
execution of test suite.

Module size(VMS) Represents total no. of lines of code in a
module. It is required for determining
execution time of a particular test case
for a particular module.

Test impact(VTI) Based on impact on test cases during
the testing of software. This factor helps
to evaluate the importance of test cases
to determine if test cases are not
executed.

3.2.5 Maintenance and Support: Every time after making
changes in the existing working code, a suite of test case have
to be executed to ensure that changes are not breaking the
working features and has not introduced any bugs in the
software[2]. Regression testing is a type of testing carried out
to ensure that changes made in fixes or any enhancements are
not impacting the previously working functionality [2][3][4].
It is executed after enhancements or defect fixes in the
software or its environment. Key factors are-

Table 5: Maintenance & Support phase prioritizing factors

Name of the factor Description
Reusable Test
Cases(RRU)

Test cases are used to test unmodified
parts of the specification and their
corresponding unmodified program
constructs

Retestable Test
Cases(RRT):

Test cases are used to test unmodified
parts of the specification and their
corresponding unmodified program
constructs

New-Structural Test
Cases(RT):

Includes structural based test cases that
verify the modified program constructs

New-Specification Test
Cases(Rs)

Includes test cases based on specification
only

3.3 Making Prioritization more effective

For attaining improved rate of fault detection and code
coverage during regression testing, each limiting factor must
be accessed properly; their affect on application must be
thoroughly looked; dividing them into different domains and
then prioritizing factors in each domain separately as well
prioritize domains as well. Various domains are represented
diagrammatically as-

Figure 1: Prioritizing domains

Preeminent need of Prioritization in Regression Testing 37

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 1; January-March, 2017

3.3.1 Understanding the basic quality criteria: software
though intangible, exists embedded in the larger more
complex business world and must be considered in that
context. The definition of quality can dramatically improve the
technical characteristics of a software product. Besides the
technical characteristics, the quality pursuit must address the
company long term competitive and financial performance.
Thus, the real issue emerges that which quality will produce
the best financial performance.

3.3.2 Identifying the most important and worst parts of the
system: Everything can never be tested as we can always find
more to test. We have to make decisions about what to test and
what not to test, what to do more or less. A way to reduce the
test load if finding the most important functional areas and
product properties. The risk associated with each area will
help identifying the worst areas of the product as well. The
general goal is to find the worst defect first and to find as
many defects as possible.

3.3.3 Determining the potential damage: After identifying the
most important and worst parts of a system, the potential
damage that may occur due to presence of defects or failure
may be calculated. A failure may be catastrophic, damaging,
hindering or annoying.

3.3.4 Identifying the difficulty levels: The most natural way
used to sequence the test cases involve moving from simple
and easy test case to difficult and complicated ones. This
scenario is commonly applied where complicated problems
can be expected. It is preferred to execute comparatively
simpler test cases first to narrow down the problem.

3.3.5Relative Dependencies: There are certain tests that can be
run only after other tests have been executed. Such
dependencies must be identified and considered while
deciding the order.

3.3.6Timing of Defect detections: There exist some defects
which surface only after other bugs have been found and
corrected such as bugs appearing during integration testing.

3.3.7Combining of test cases: Some test cases are verifying
same features. Such redundant test cases must be looked for
and removed to limit the size of test case suite.

4. CONCLUSIONS

An improved rate of fault detection and code coverage during
regression testing can let software engineers begin their
debugging activities earlier than might otherwise be possible,
speeding the release of the software. Efficiency and quality are
best served by approaching regression testing activities in a
structured and scientific way, instead of the, usual ‘monkey-
testing’. The usefulness of regression testing effort can be
maximized by selection of appropriate testing strategy and
optimization method to support the testing process. Test case

prioritization approaches improve the cost-effectiveness of
regression testing by increasing the probability that if testing
ends prematurely, important test cases have been run.
Prioritize the test cases depending on business impact, critical
& frequently used functionalities. Selection of test cases based
on priority will greatly reduce the regression test suite. The net
result would be an increase in the produced software quality
and a decrease in costs, both of which can only be beneficial
to a software development organization. Thus making sure
that, whenever you stop testing, you have done the best testing
in the time available.

REFERENCES

[1] Sommerville Ian, “Software Engineering,” 6th Ed., Pearson
Education, 2004.

[2] Roger S Pressman, “Software Engineering,” 5th Ed, McGraw
Hill, 2001.

[3] P. Jalote , “An Integrated Approach to Software Engineering,”
2nd Ed., Narosa publication, 2002.

[4] R. Mall, “Fundamentals of Software Engineering,” 3rd Ed., PHI
Learning Private Ltd., 2009.

[5] C. Catal, D. Mishra, “Test case prioritization: a systemic
mapping study,” Software Quality Journal, vol. 21, 2013 pp.
445-478.

[6] J.M Kim, A. Porter, “A History-Based Test Prioritization
Technique for Regression Testing in Resource Constrained
Environments,” ICSE, vol. 24, pp 364-373, 2002.

[7] C. Catal, “The ten best practices for test case prioritization”,
ICIST, CCIS 319, pp. 452-459, 2012.

[8] A. Srivastava, J. Thiagarajan,”Effectively Prioritizing Tests in
Development Environment,”,Proc. ACM International
Symposium onSoftware Testing and Analysis, ISSTA-02, pp.
97- 106, 2002.

[9] W. Zhang, B. Wei, H. Du, “ Test case prioritization based on
Genetic Algorithm and test-points coverage,” Springer
International publishing, ICA3PP, LNCS 8630, pp. 644-
654,2014.

[10] Fraser, Gordan, and Franz Wotawa, “Test-case prioritization
with model-checkers,” In 25th conference on IASTED
international, 2007.

[11] B. Korel, G. Koutsogiannakis, L. Tahat, "Model-Based Test
Prioritization Heuristic Methods and Their Evaluation”, 3rd
ACMWorkshop on Advances in Model Based Testing, A-MOST,
2007.

[12] G. Rothermel, R. Untch, C. Chu, M. Harrold,”Test Case
Prioritization: An Empirical Study,”, Proc. IEEE International
Conference on Software Maintenance, pp. 179-188, 1999.

[13] H. Srikanth, L. Williams, and J. Osborne.System test case
prioritization of new and regression test cases., In Proceedings
of the 4thInternational Symposium on Empirical
SoftwareEngineering (ISESE), pages 62-71. IEEE Computer
Society, November 2005.

[14] B. Korel, L. Tahat, M. Harman,”Test prioritization Using
System Models”, 21st IEEE International Conference Software
Maintenance(ICSM ’05), pp. 559-568, 2005.

